a2 United States Patent

Bushman et al.

US009489140B2

US 9,489,140 B2
*Nov. 8, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)
(65)

(63)

(1)

(52)

(58)

EXPOSING PROPRIETARY DATA TO A
HYPERVISOR AS NATIVE HYPERVISOR
DATA

Applicant: STORAGECRAFT TECHNOLOGY
CORPORATION, Draper, UT (US)

Inventors: Nathan S. Bushman, Pleasant Grove,
UT (US); Maxim Shatskikh, Moscow
RU)

Assignee: STORAGECRAFT TECHNOLOGY
CORPORATION, Draper, UT (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/966,388
Filed: Dec. 11, 2015

Prior Publication Data

US 2016/0098204 Al Apr. 7, 2016

Related U.S. Application Data

Continuation of application No. 14/569,330, filed on
Dec. 12, 2014, now Pat. No. 9,311,003, which is a
continuation of application No. 14/293,122, filed on
Jun. 2, 2014, now Pat. No. 8,943,105.

Int. CL.

GOG6F 17/30 (2006.01)

GOG6F 3/06 (2006.01)

GOG6F 9/455 (2006.01)

U.S. CL

CPC ... GO6F 3/061 (2013.01); GOGF 3/0604
(2013.01); GO6F 3/0659 (2013.01);
(Continued)

Field of Classification Search

None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
8,332,680 B2 12/2012 Timashev et al.
8,370,835 B2 2/2013 Dittmer
(Continued)
FOREIGN PATENT DOCUMENTS
EP 2488946 8/2012
EP 2580662 4/2013
(Continued)

OTHER PUBLICATIONS

“Veeam vPower NFS Service” by Veeam Help Center as of Apr. 22,
2014, accessed from http://helpcenter.veeam.com/backup/70/
vsphere/vpower _nfs_ service.html on Aug. 22, 2014.

(Continued)

Primary Examiner — Bai D. Vu
(74) Attorney, Agent, or Firm — Maschoff Brennan

(57) ABSTRACT

Exposing proprietary data to a hypervisor as native hyper-
visor data. In one example embodiment, one or more non-
transitory computer-readable media store one or more pro-
grams that are configured, when executed, to cause one or
more processors to perform a method of exposing propri-
etary data to a hypervisor as native hypervisor data. The
method may include identifying a proprietary disk file
having a proprietary file format, identifying a plugin file
corresponding to the proprietary disk file with the plugin file
having a plugin file format which is different from a native
hypervisor disk file format, and intercepting read requests
directed to the plugin file. The method may further include,
in response to each read request, gathering data gathered
from the proprietary disk file, restructuring the data to cause
the data to appear to be gathered from a native hypervisor
disk file, and responding with the restructured data.

20 Claims, 5 Drawing Sheets

/100

52 G (3
1o¢ 108

Host Machine Hypsrvisor
102

l

‘ File System Filter Driver |
jil]

|

File System |
112

US 9,489,140 B2

Page 2
(52) US. CL WO 2011046813 A3 7/2011
. WO 2011159701 A2 12/2011
CPC GO6F 3/0661 (2013.01); GOGF 3/0664 WO 2012012365 A2 12012
(2013.01); GO6F 3/0667 (2013.01); GO6F WO 5011159701 A3 4/2012
3/0673 (2013.01); GO6F 3/0674 (2013.01); WO 2012012365 A3 4/2012
GO6F 9/45545 (2013.01); GOGF 9/45558 WO 2014199230 A2 122014
WO 2014199230 A3 4/2015

(2013.01); GOGF 17/30076 (2013.01); GO6F
17/30233 (2013.01); GO6F 17/30569
(2013.01); GOGF 2009/45579 (2013.01); GO6F
2009/45583 (2013.01)

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

References Cited

(56)
8,402,309 B2 3/2013
8,413,146 Bl 4/2013
8,566,640 B2 10/2013
8,745,444 B2 6/2014
8,943,105 Bl 1/2015
9,015,129 B2 4/2015
9,075,649 Bl 7/2015
2010/0011014 Al 1/2010
2011/0087874 Al 4/2011
2011/0196842 Al 8/2011
2011/0307657 A1 12/2011
2012/0017114 Al 1/2012
2012/0185427 Al 7/2012
2012/0278806 Al 11/2012
2012/0284236 Al 11/2012
2013/0212437 Al 8/2013
2014/0006858 Al 1/2014
2014/0047268 Al 2/2014
2014/0281217 Al 9/2014
2014/0289566 Al 9/2014
2014/0351810 A1 11/2014
2014/0365740 Al 12/2014
2015/0106802 Al 4/2015
2015/0347014 Al 12/2015
EP 2596426 A2
WO 2011046813 A2

Timashev et al.

McCorkendale et al.

Timashev et al.
Timashev et al.
Bushman et al.
Timashev et al.
Bushman et al.
Odulinski et al.
Timashev et al.
Timashev et al.
Timashev et al.
Timashev et al.
Fontignie et al.
Wade et al.
Timashev et al.
Timashev et al.
Helfman et al.
Timashev et al.
Beam et al.
Timashev et al.
Pratt et al.
Vasilyev et al.
Ivanov et al.
Bushman et al.

5/2013
4/2011

OTHER PUBLICATIONS

Bill Oliver, “Symantec NetBackup 7.6 Claims 400x Faster VM
Recovery”, Web Article, Jan. 23, 2014, Toms IT PRO, accessed Sep.
30, 2014, http://www.tomsitpro.com/articles/symantec-netbackup-
backup-vmware-recovery, 1-1599 html.

“NetBackup Instant Recovery for Vmware”, Online Discussion
Forum Post, Feb. 13, 2014, Symantec, accessed Sep. 30, 2014,
http://www.symantec.com/connect/forums/netbackup-instant-
recov.

“About Instant Recovery for VMware”, Online Article, Oct. 2,
2013, Symantec, accessed Sep. 30, 2014, http://www.symantec.
com/business/support/index!page=content&id=HOWT092050#
v75775331.

“Instant Recovery for VMware”, Web Article, Aug. 2, 2013,
Symantec, accessed Sep. 30, 2014, downloaded from http://
kbdownload.symantec.com/resources/sites/BUSINESS/content/
live/TECHNICAL__SOLUTION/211000/TECH211113/en_ US/
NetBackup%207.6%20Feature%20Briefing%20-%20Instant%
20Recovery%20for%20VMware.pdf?__gda_ =1412115174__
0a10636df3aca9da6d796d34e8cal28c.

“Instant VM Recovery” by Veeam Help Center as of Jun. 3, 2014,
accessed from http://helpcenter.veeam.com/backup/70/hyperv/in-
dex.html on Apr. 27, 2015.

“Instant VM Recovery” by Vembu accessed from https://www.
vembu.com/features/bdr/disaster-recovery/ on Apr. 27, 2015.
Notice of Allowance mailed Apr. 27, 2015 in U.S. Appl. No.
14/605,699.

Office Action mailed Sep. 25, 2014 in U.S. Appl. No. 14/293,122.
Notice of Allowance mailed Nov. 21, 2014 in U.S. Appl. No.
14/293,122.

Office Action mailed Jan. 29, 2015 in U.S. Appl. No. 14/569,330.
Office Action mailed Aug. 20, 2015 in U.S. Appl. No. 14/569,330.
Notice of Allowance mailed Dec. 2, 2015 in U.S. Appl. No.
14/569,330.

U.S. Patent Nov. 8, 2016 Sheet 1 of 5 US 9,489,140 B2

/-100

Guest VM
108

/ Host Machine Hypervisor \
102

)

i

File System Filter Driver
110

)

|

File System
112

)

e
S

Storage 114

116 120
1

1g| |12

N~
FIG. 1

US 9,489,140 B2

Sheet 2 of 5

Nov. 8, 2016

U.S. Patent

00¢ \

741 wa)shs ajg

ve "Ol4

(@)

9|14 ¥s1q Aejaudold wol4 Bleq
layles o] Jsenbay peay sli4 AIPOW

mhmk

|

9|14 ¥siq Aleyoudold o)
Buipuodsali09))14 uibn|g s1e81)

156nhay pesy a|i4 Jdaaisu| 1sonbay peay 9|14 pussg

9l J 1424 J
$$920Nng Jodoy podoy $S900NG BAIBIY
01z _ 21z
1ewWLI04 3|14 uibn|d seH

9|4 uibin|d Jey L sulwisieq
80z ,

1senbay usdQ 914 1daass)u| 1s8nbay uadQ 9|14 pues
90¢ J 414 J

Nomk

044 J9ALIQ J9Y|14 weysAS 3|l

201 10sIMadAH

US 9,489,140 B2

Sheet 3 of 5

Nov. 8, 2016

U.S. Patent

g¢ 9l

| |
| _
| |
| |
_ Ble(] PoINONYSey puss _ - BlB(] PRINONISIY SAI3IaY
" 262 , __ vez-
10sinedAH O Tewiod i
_ SAIRN 0JU| BJe(QINoN)say _
| 0ez-’ _ _
ele(pajayles) pusg | eleq palayles) onsosYy _
52z _ | 622/ |
g | | |
vz | |
159nbay POUIPOW SN0 " 189nbay POYIPO PUSS ﬂ
22z | 0zz- _
| _
| |

US 9,489,140 B2

Sheet 4 of 5

Nov. 8, 2016

U.S. Patent

93¢ Old

00¢ \

| |
| |
| |
| |
$5900NnG Loday _ Joday $$920NG SAI909Y _
grz- J | 0527 _
8|l ¥s1g Arejeidoid o) eleq sl _ _
9z’] " "
159nboy PaLIPO SAI999Y _ 188nbay pauIpo pussg _
x&L _ NEL _
1ewI04 8|14 Aieyaudoid uj 814
_ 3810 Arejeridoid 0L ejeq SjM _
01 1sanbayq a)liAn 814 AIPO
e |
" 159nbay allAA B]14 1d80i8)U) — " 1sanbay S)AA 914 pUas
_ mmmL _ @mmk
| |
| |

US 9,489,140 B2

Sheet 5 of 5

Nov. 8, 2016

U.S. Patent

ac o

9715 pajoadx3 puss

- 9215 paloadxg ansay

29~ A y9z-

10sInjBdAH 1O JewloL 814 saeN
BuineH Ing aj14 wbniq 0 Buipuodsanio)
9|4 v JO 92IS pajoadx3 uy sulwisie(

09z 1

159nbay LNy 92/ 8|4 pues

$5999ngG Loday - 1oday $5829NSG BAII9Y

vmm\

00¢ \

|
|
|
|
|
|
| 153nbay eINGLRY 8215 8|l 1de0ial] [
|
|
|
|
|
|
_

|
|
|
|
|
|
|
867/ | 957
|
|
|
|
|
|

US 9,489,140 B2

1
EXPOSING PROPRIETARY DATA TO A
HYPERVISOR AS NATIVE HYPERVISOR
DATA

CROSS-REFERENCE TO A RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 14/569,330, filed Dec. 12, 2014, and titled
“EXPOSING PROPRIETARY DATA TO A HYPERVISOR
AS NATIVE HYPERVISOR DATA,” which is a continua-
tion of U.S. patent application Ser. No. 14/293,122, filed
Jun. 2, 2014, and titled “EXPOSING A PROPRIETARY
DISK FILE TO A HYPERVISOR AS A NATIVE HYPER-
VISOR DISK FILE,” each of which is incorporated herein
by reference in its entirety.

FIELD

The embodiments disclosed herein relate to exposing
proprietary data to a hypervisor as native hypervisor data.

BACKGROUND

A virtual machine is a software-based emulation of a
physical machine (e.g., a computer) that executes programs
like the physical machine. Virtual machines generally oper-
ate based on the computer architecture and functions of a
real computer. Virtual machines generally provide a com-
plete system platform which supports the execution of a
complete operating system. Virtual machines usually emu-
late an existing architecture, and are built with the purpose
of either providing a platform to run programs where the real
hardware is not available for use (for example, executing on
otherwise obsolete platforms), or of having multiple
instances of virtual machines leading to more efficient use of
computing resources, both in terms of energy consumption
and cost effectiveness. This efficient use of computing
resources is known as hardware virtualization. The use of a
virtual machine may enable: multiple operating system
environments to coexist on the same computer, in strong
isolation from each other; an instruction set architecture
(ISA) that is somewhat different from that of the real
machine; and application provisioning, maintenance, high
availability, and disaster recovery.

Ahypervisor is computer software, computer firmware, or
computer hardware that creates and runs virtual machines. A
computer on which a hypervisor is running one or more
virtual machines is generally referred to as a host machine,
while each virtual machine running on the host machine is
generally referred to as a guest machine. The hypervisor
presents the guest operating systems with a virtual operating
platform and manages the execution of the guest operating
systems. Multiple instances of a variety of operating systems
may share the virtualized hardware resources.

A host machine generally employs a hypervisor to create
a guest virtual machine by accessing a virtual machine disk
file that contains or references disk data that is necessary to
create the guest virtual machine. One common problem
encountered when utilizing a hypervisor is that some hyper-
visors are only designed to access virtual machine disk files
that have a particular file format that is native to the
hypervisor. For example, Microsoft Hyper-V® hypervisors
are designed to only be capable of accessing virtual machine
disk files having the VHD and VHDX file formats, which are
the native file formats for Microsoft® Hyper-V® hypervi-
sors, for the purpose of creating a guest virtual machine. In

10

15

20

25

30

35

40

45

50

55

60

65

2

particular, Microsoft Hyper-V® technology lacks disk
plugin application programming interfaces (APIs) which are
necessary to enable third parties to quickly attach disk data
from their own disk image formats into Microsoft® Hyper-
V® hypervisors for access by virtual machines as virtual
machine disk files. This inability of some hypervisors to
access a variety of differently-formatted virtual machine
disk files, due to a lack of disk plugin APIs for example,
limits the virtual machine disk files that can be used to create
virtual machines using these hypervisors.

The subject matter claimed herein is not limited to
embodiments that solve any disadvantages or that operate
only in environments such as those described above. Rather,
this background is only provided to illustrate one example
technology area where some embodiments described herein
may be practiced.

SUMMARY

In general, example embodiments described herein relate
to exposing proprietary data to a hypervisor as native
hypervisor data. The example methods disclosed herein may
be employed to allow a hypervisor on a host machine to
create guest virtual machines using proprietary disk files
even where the hypervisor is designed to only be capable of
creating guest virtual machines using native hypervisor disk
files. The example methods disclosed herein therefore
enable a hypervisor to access a variety of differently-
formatted disk files and thereby expand the types of disk
files that can be used by the hypervisor to create guest virtual
machines.

In one example embodiment, one or more non-transitory
computer-readable media store one or more programs that
are configured, when executed, to cause one or more pro-
cessors to perform a method of exposing proprietary data to
a hypervisor as native hypervisor data. The method may
include identifying a proprietary disk file having a propri-
etary file format, identifying a plugin file corresponding to
the proprietary disk file with the plugin file having a plugin
file format which is different from a native hypervisor disk
file format, and intercepting read requests directed to the
plugin file. The method may further include, in response to
each read request, gathering data gathered from the propri-
etary disk file, restructuring the data to cause the data to
appear to be gathered from a native hypervisor disk file due
to being structured in the native hypervisor disk file format,
and responding with the restructured data.

In another example embodiment, one or more non-tran-
sitory computer-readable media store one or more programs
that are configured, when executed, to cause one or more
processors to perform a method of exposing proprietary data
to a hypervisor as native hypervisor data. The method may
include identifying a proprietary disk file having a propri-
etary file format, identifying a plugin file corresponding to
the proprietary disk file with the plugin file having a plugin
file format which is different from a native hypervisor disk
file format, creating a differencing disk file associated with
the plugin file, receiving write requests directed to the plugin
file, and redirecting the write requests to the differencing
disk file.

In another example embodiment, one or more non-tran-
sitory computer-readable media store one or more programs
that are configured, when executed, to cause one or more
processors to perform a method of exposing proprietary data
to a hypervisor as native hypervisor data. The method may
include identifying a proprietary disk file having a propri-
etary file format, creating a plugin file corresponding to the

US 9,489,140 B2

3

proprietary disk file with the plugin file having a plugin file
format which is different from a native hypervisor disk file
format, intercepting a file open request directed to the plugin
file, determining that the plugin file has the plugin file
format, responding to the file open request with a report that
the plugin file was opened successfully, and intercepting
read requests directed to the plugin file. The method may
further include, in response to each read request, gathering
data gathered from the proprietary disk file, restructuring the
data to cause the data to appear to be gathered from a native
hypervisor disk file due to being structured in the native
hypervisor disk file format, and responding with the restruc-
tured data.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the inven-
tion, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

Example embodiments will be described and explained
with additional specificity and detail through the use of the
accompanying drawings in which:

FIG. 1 is a schematic block diagram illustrating an
example hypervisor system; and

FIGS. 2A-2D are a schematic flowchart diagram of an
example method of exposing a proprietary disk file to a
hypervisor as a native hypervisor disk file.

DESCRIPTION OF EMBODIMENTS

The phrase “native hypervisor disk file” as used herein
refers to a virtual machine disk file having a file format that
is native to a particular hypervisor. An example is the VHDX
file format used by Microsoft® Hyper-V® hypervisors.
Another example is the VMDK file format used by
VMware® hypervisors. The phrase “proprietary file format™
as used herein refers to a file format which is not natively
understood by a particular hypervisor. The phrase “propri-
etary disk file” as used herein refers to a file, or data storage
system such as a deduplication vault or database, which
contains disk data and which is structured in a proprietary
file format. An example is the StorageCraft® ShadowPro-
tect® Full (SPF) backup image file format. The phrase
“plugin file” as used herein refers to a file corresponding to
a native hypervisor disk file which is recognizable by a file
system filter driver and which appears to be a native hyper-
visor disk file to the operating system, the hypervisor, and to
all other applications due to the filtering functionality pro-
vided by a file system filter driver. This file generally points
to the proprietary disk file and is generally much smaller in
size that a corresponding real native hypervisor disk file
would be. An example would be a file named “vm.vhdx”
which, because of its “vhdx” file extension, and due to the
filtering activity of a file system filter driver, appears to be
a Microsoft® Hyper-V® VHDX native hypervisor disk file,
but in reality does not necessarily contain the typical content
or structure of a native hypervisor disk file, and rather is in
reality a plugin file that points to a corresponding SPF
backup image proprietary disk file named “vm.spf” that is
separate from the plugin file. The phrase “plugin file format”
as used herein refers to a file format of a plugin file which
is different from the native hypervisor disk file format of the
native hypervisor disk file to which the plugin file corre-
sponds, because the structure of the plugin file format is
different from the native hypervisor disk file format and/or
because at least some portion of the data that would typically

10

15

20

25

30

35

40

45

50

55

60

65

4

be stored in the plugin file (having the same structure as the
native hypervisor disk file format) is stored elsewhere. From
the example above, the plugin file “vm.vhdx” would have a
plugin file format structure that is different from the native
hypervisor disk file format structure of VHDX native hyper-
visor disk files. In another example, a plugin file named
“vm2.vhdx” could have a plugin file format structure that is
the same as the VHDX native hypervisor disk file format
structure, but the “vm2.vhdx” plugin file could be missing
some data that would typically be stored in the native
hypervisor disk file but is instead retrievable from a corre-
sponding SPF backup image proprietary disk file named
“vm2.spf” using a file system filter driver.

FIG. 1 is a schematic block diagram illustrating an
example hypervisor system 100. As disclosed in FIG. 1, the
example system 100 includes a host machine hypervisor
102, multiple guest virtual machines 104, 106, and 108, a file
system filter driver 110, a file system 112, and a storage 114.
The storage 114 includes native hypervisor disk files 116 and
118, a proprietary disk file 120, and a plugin file 122.

The hypervisor 102 may be computer software, computer
firmware, or computer hardware of a host machine (not
shown) that is configured to create, run, and manage one or
more guest virtual machines, such as the virtual machines
104, 106, and 108. The virtual machines 104, 106, and 108
are virtual machines that were created by, run by, and
managed by the hypervisor 102. Each of the virtual
machines 104, 106, and 108 is a software-based emulation
of a physical machine (e.g., a computer) that is configured
to execute programs like the physical machine.

The creation of each of the virtual machines 104, 106, and
108 was achieved by the hypervisor 102 accessing a disk file
in the storage 114. In particular, the hypervisor 102 created
the virtual machine 104 by accessing the native hypervisor
disk file 116, which has the native file format of the
hypervisor 102. Similarly, the hypervisor 102 created the
virtual machine 106 by accessing the native hypervisor disk
file 118, which also has the native file format of the
hypervisor 102.

In contrast, the hypervisor 102 created the virtual machine
108 by the file system filter driver 110 exposing the propri-
etary disk file 120 to the hypervisor 102. The proprietary
disk file 120 has a file format which is not natively under-
stood by the hypervisor 102. Although the hypervisor 102 is
not capable of directly accessing the proprietary disk file 120
due to the proprietary disk file 120 having a file format that
is not natively understood by the hypervisor 102, the meth-
ods disclosed herein enable the file system filter driver 110
to expose the proprietary disk file 120 to the hypervisor 102
in the native file format of the hypervisor 102.

In one example embodiment, the hypervisor 102 may be
a Microsoft® Hyper-V® hypervisor, and the proprietary
disk file 120 may be a StorageCraft® ShadowProtect® Full
(SPF) backup image file. Using the example methods dis-
closed herein, the Microsoft® Hyper-V® hypervisor may
create the virtual machine 108 using the SPF backup image
file and/or using a corresponding plugin file, even though the
SPF backup image file format is not natively understood by
the Microsoft® Hyper-V® hypervisor. This is accomplished
by the file system filter driver 110 intercepting each request
sent from the Microsoft® Hyper-V® hypervisor to the SPF
backup image file and/or to the plugin file, and responding
to the request in such a way that the SPF backup image file
and/or the plugin file appears to be a valid VHDX file, which
is a native hypervisor disk file for Microsoft® Hyper-V®
hypervisors. In this manner, even though the Microsoft®
Hyper-V® hypervisor is not capable of directly accessing

US 9,489,140 B2

5

the SPF backup image file due to the SPF backup image file
having a file format that is not natively understood by the
Microsoft® Hyper-V® hypervisor, the methods disclosed
herein enable the file system filter driver 110 to expose the
SPF backup image file to the Microsoft® Hyper-V® hyper-
visor in the native VHDX file format of the Microsoft®
Hyper-V® hypervisor, thereby expanding the types of disk
files that can be used by the Microsofit® Hyper-V® hyper-
visor to create guest virtual machines.

Although only a single storage is disclosed in the system
100 in FIG. 1, it is understood that the system 100 may
instead include two or more storages. Further, although the
storage 114 is disclosed in FIG. 1 being local to the
hypervisor 102, it is understood that the storage 114 may be
remote from the hypervisor 102. Further, one or more of the
files 116, 118, 120, and 122 may be stored remotely from the
hypervisor 102. For example, the plugin file 122 may be
stored locally to the hypervisor 102 while the proprietary
disk file 120 is stored remotely from the hypervisor 102.
Further, although the file system filter driver 110 is the only
filter driver disclosed in the example system 100 of FIG. 1,
it is understood that the functionality of the file system filter
driver 110 may be replaced or augmented by one or more
similar filter drivers residing on the system 100 or another
system that is local to or remote from the system 100.
Additionally, the proprietary disk file 120 may not be an
actual file but may instead be any other data storage system
such as a deduplication vault or database, which contains
disk data and which is structured in a proprietary file format.

Having described one specific environment with respect
to FIG. 1, it is understood that the specific environment of
FIG. 1 is only one of countless environments in which the
example methods disclosed herein may be employed. The
scope of the example embodiments is not intended to be
limited to any particular environment.

FIGS. 2A-2D are a schematic flowchart diagram of an
example method 200 of exposing a proprietary disk file to a
hypervisor as a native hypervisor disk file. The method 200
may be implemented, in at least some embodiments, by the
hypervisor 102, the file system filter driver 110, and the file
system 112 of the system 100 of FIG. 1. For example, the
hypervisor 102, the file system filter driver 110, and the file
system 112 may be configured to execute computer instruc-
tions to perform operations of exposing data from the
proprietary disk file 120, using the plugin file 122, to the
hypervisor 102 as a native hypervisor disk file, as repre-
sented by one or more of the steps 202-264 of the method
200. Although illustrated as discrete steps, various steps may
be divided into additional steps, combined into fewer steps,
or eliminated, depending on the desired implementation.
The method 200 will now be discussed with reference to
FIGS. 1 and 2A-2D.

The method 200 may include a step 202, in which a plugin
file corresponding to a proprietary disk file is created. For
example, the file system filter driver 110 may, at step 202,
create the plugin file 122 that corresponds to the proprietary
disk file 120. Alternatively, another driver or module, such
as a user-mode module that runs on the same host machine
as the hypervisor 102 or that runs on another local or remote
machine, may, at step 202, create the plugin file 122 that
corresponds to the proprietary disk file 120. As noted above,
the proprietary disk file 120 has a proprietary file format and
the plugin file 122 has a plugin file format. Also noted above,
the plugin file 122 may be stored in the storage 114 where
the proprietary disk file 120 is stored, or the plugin file 122
and/or the proprietary disk file 120 may be stored in another
local or remote storage. As illustrated in FIG. 1, the plugin

25

35

40

45

6

file 122 may include a pointer that points to the proprietary
disk file 120. Additionally or alternatively, the plugin file
122 may be associated with the proprietary disk file 120
using a data storage system that is external to the plugin file
122, such as a database that is stored elsewhere in the storage
110 or in another local or remote storage.

The method 200 may include a step 204, in which a file
open request is sent, and a step 206, in which the file open
request is intercepted. For example, the hypervisor 102 may,
at step 204, send a file open request directed to the plugin file
122 and the file system filter driver 110 may, at step 206,
intercept the file open request. This interception of this
request, and the interception of all other requests discussed
herein, may be possible due to the file system filter driver
110 sitting between the hypervisor 102 and the file system
112 where the plugin file 122 is stored. In this position, the
file system filter driver 110 is able to intercept, examine, and
modify, if desired, all requests from the hypervisor 102 to
the file system 112.

Continuing with the above example, even though the
plugin file 122 has a plugin file format, the hypervisor 102
may nevertheless attempt to open the plugin file 122 because
the plugin file may falsely appear to have a native file
format. For example, a portion of a name attribute of the
plugin file 122, such as file extension of the name attribute
of'the plugin file 122, may falsely identify the plugin file 122
as having the native file format of the hypervisor 102. In this
example, the hypervisor 102 may be a Microsoft® Hyper-
V® hypervisor, and the plugin file 122 may be named
“vm.vhdx,” the proprietary disk file 120 is an SPF backup
image file named “vm.spf” that is separate from the plugin
file 122. The “vhdx” file extension falsely identifies the
plugin file 122 as having the native VHDX file format of the
Microsoft® Hyper-V® hypervisor 102. In reality, of course,
the plugin file 122 does not contain the typical content
and/or structure of a native VHDX file, but instead is in
reality a plugin file that points to the corresponding SPF
backup image file named “vm.spf” that is separate from the
plugin file 122.

The method 200 may include a step 208, in which it is
determined that the plugin file has a plugin file format. For
example, the file system filter driver 110 may, at step 208,
determine that the plugin file 122 has a plugin file format.
This determination may be made in a variety of different
ways. For example, the file system filter driver 110 may
determine that the plugin file 122 has a plugin file format by
determining that metadata that identifies the plugin file 122
as having a plugin file format is present in the plugin file
122. Alternatively or additionally, the file system filter driver
110 may determine that the plugin file 122 has a plugin file
format by determining that the plugin file 122 is present in
a list of files that have the plugin file format this is stored in
a data storage system that is external to the plugin file 122,
such as a database that is stored elsewhere in the storage 114
or in another storage.

The method 200 may include a step 210, in which success
is reported, and a step 212, in which the success report is
received. For example, the file system filter driver 110 may,
at step 210, respond to the previously received file open
request with a report that the plugin file 122 was opened
successfully, and the hypervisor 102 may, at step 212,
receive the success report.

This reporting of success may be performed at steps 210
and 212 either after actually having opened the proprietary
disk file 120 or without actually having opened the propri-
etary disk file 120. In practice, it has been discovered that at
least some hypervisors perform many reads of metadata of

US 9,489,140 B2

7

a virtual machine disk file without actually requesting disk
data, and do so between several consecutive file open and
file close requests on the virtual machine disk files. This
occurs most often when virtual machine disk files are being
attached to guest virtual machines, or when virtual machine
configuration settings are being modified. Therefore, to
improve performance, the user experience, and reduce
resource usage, the file system filter driver 110 may defer
actually opening the proprietary disk file 120 until abso-
lutely necessary. This may involve storing sufficient meta-
data to respond to other reads of virtual machine disk file
metadata within the plugin file 122 itself, so that such
requests can be responded to without the typically-expensive
need to open the proprietary disk file 120.

After the performance of step 212, the hypervisor 102 will
believe that a native hypervisor disk file having the native
file format of the hypervisor 102 has been opened, even
though the actual file that has been accessed is the plugin file
122 that has a plugin file format. The plugin file 122 will be
subsequently used by the file system filter driver 110 to
expose the proprietary disk file 120 to the hypervisor 102 in
the native file format of the hypervisor 102.

After the performance of step 212, the method 200 may
proceed to any of the steps 214, 236, or 256. Although the
steps 214-264 will be disclosed in ascending order below, it
is understood that any of the groups of steps 214-234,
236-254, and 256-264 may be performed at any time,
including repeatedly, after the performance of step 212.

The method 200 may include a step 214, in which a file
read request is sent, and a step 216, in which the file read
request is intercepted. For example, the hypervisor 102 may,
at step 214, send a file read request directed to the plugin file
122 and the file system filter driver 110 may, at step 216,
intercept the file read request.

The method 200 may include a step 218, in which the read
request is modified to gather data from a proprietary disk
file. For example, the file system filter driver 110 may, at step
218, modify the read request to direct that data be gathered
from the proprietary disk file 120 instead of from the plugin
file 122. This modification may be enabled by the pointer in
the plugin file 122 and thereby indicates that the proprietary
disk file 120 should be the actual target of any read and/or
write requests sent by the hypervisor 102 to the plugin file
122.

The method 200 may include a step 220, in which the
modified request is sent, and a step 222, in which the
modified request is received. For example, the file system
filter driver 110 may, at step 220, send the modified request
and the file system 112 may, at step 222, receive the
modified request.

The method 200 may include a step 224, in which the
requested data is gathered from the proprietary disk file. For
example, the file system 112 may, at step 224, gather data
from the proprietary disk file 120 as instructed by the
modified request.

The method 200 may include a step 226, in which the
gathered data is sent, and a step 228, in which the gathered
data is received. For example, the file system 112 may, at
step 226, send the gathered data and the file system filter
driver 110 may, at step 228, receive the gathered data.

The method 200 may include a step 230, in which the data
is restructured into a native file format of the hypervisor. For
example, the file system filter driver 110 may, at step 230,
restructure the data that was received into the native file
format of the hypervisor 102. This restructuring of the data
may be intended to make the data appear to the hypervisor

10

15

20

25

30

35

40

45

50

55

60

65

8

102 to have been gathered from a native hypervisor disk file
due to being formatted in the native file format of the
hypervisor 102.

The method 200 may include a step 232, in which the
restructured data is sent, and a step 234, in which the
restructured data is received. For example, the file system
filter driver 110 may, at step 232, send the restructured data,
and the hypervisor 102 may, at step 234, receive the restruc-
tured data.

After the performance of step 234, the hypervisor 102 will
have been deceived by the file system filter driver 110 to
believe that a read request was successfully executed on a
native hypervisor disk file having the native file format of
the hypervisor 102, even though the actual file that has been
read from is the proprietary disk file 120 having a propri-
etary file format. This deception on the part of the file system
filter driver 110 allows the file system filter driver 110 to
expose the proprietary disk file 120 to the hypervisor 102 in
the native file format of the hypervisor 102, thereby expand-
ing the types of disk files that can be effectively read by the
hypervisor 102.

The method 200 may include a step 236, in which a file
write request is sent, and a step 238, in which the file write
request is intercepted. For example, the hypervisor 102 may,
at step 236, send a file write request directed to a particular
location in the plugin file 122 and the file system filter driver
110 may, at step 238, intercept the file write request.

The method 200 may include a step 240, in which the file
write request is modified to write the data to a location in the
proprietary disk file in the proprietary file format. For
example, the file system filter driver 110 may, at step 240,
modify the file write request to direct that data be written to
a location in the proprietary disk file 120 instead of to the
plugin file 122.

The method 200 may include a step 242, in which the
modified request is sent, and a step 244, in which the
modified request is received. For example, the file system
filter driver 110 may, at step 242, send the modified request
and the file system 112 may, at step 244, receive the
modified request.

The method 200 may include a step 246, in which the data
is written to the proprietary disk file. For example, the file
system 112 may, at step 246, write the data from the
modified write request to the proprietary disk file 120 as
instructed by the modified request.

The method 200 may include a step 248, in which a
success is reported, and a step 250, in which the success
report is received. For example, the file system 112 may, at
step 248, report success and the file system filter driver 110
may, at step 250, receive the success report.

The method 200 may include a step 252, in which a
success is reported, and a step 254, in which the success
report is received. For example, the file system filter driver
110 may, at step 252, report success, and the hypervisor 102
may, at step 254, receive the success report.

After the performance of step 254, the hypervisor 102 will
have been deceived by the file system filter driver 110 to
believe that a write request was successfully executed on a
native hypervisor disk file having the native file format of
the hypervisor 102, even though the actual file that has been
written to is the proprietary disk file 120 having a proprietary
file format. This deception on the part of the file system filter
driver 110 allows the file system filter driver 110 to expose
the proprietary disk file 120 to the hypervisor 102 in the
native file format of the hypervisor 102, thereby expanding
the types of disk files that can be effectively written to by the
hypervisor 102.

US 9,489,140 B2

9

The method 200 may include a step 256, in which a file
size attribute request is sent, and a step 258, in which the file
size attribute request is intercepted. For example, the hyper-
visor 102 may, at step 256, send a file size attribute request
directed to the plugin file 122 and the file system filter driver
110 may, at step 258, intercept the file size attribute request.

The method 200 may include a step 260, in which an
expected size of a file corresponding to the plugin file having
the native file format of the hypervisor is determined. For
example, the file system filter driver 110 may, at step 260,
determine an expected size of a file corresponding to the
plugin file 122 having the native file format of the hypervisor
102. In other words, the expected size may be the size that
a comparable file having the native file format would have
were the comparable file to be created to replace the com-
bination of the plugin file 122 and the proprietary disk file
120.

The method 200 may include a step 262, in which the
expected size is sent, and a step 264, in which the expected
size is received. For example, the file system filter driver 110
may, at step 262, send the expected size, and the hypervisor
102 may, at step 264, receive the expected size.

After the performance of step 264, the hypervisor 102 will
have been deceived by the file system filter driver 110 to
believe that a file size attribute request was successfully
executed on a native hypervisor disk file having the expected
file size of a native hypervisor disk file of the hypervisor
102, even though the actual file that has been the subject of
the file size attribute request is the plugin file 122 whose size
may not match the expected size of a native hypervisor disk
file. This deception on the part of the file system filter driver
110 allows the file system filter driver 110 to expose the
proprietary disk file 120 to the hypervisor 102 in the
expected file size of the native hypervisor disk file of the
hypervisor 102, thereby expanding the types of disk files that
can be used by the hypervisor 102.

It is understood that the steps 202, 206, 208, 210, 216,
218, 220, 228, 230, 232, 238, 240, 242, and 250 may be
performed by a driver or module other than the file system
filter driver 110, such as a user-mode module that runs on the
same host machine as the hypervisor 102.

It is also understood that the steps 260-264 may be
replaced where the plugin file 122 is a sparse file, such as a
New Technology File System (NTFS) sparse file, with a size
attribute set to an expected size of a corresponding file
having the native file format of the hypervisor 102. In this
example, the file system filter driver 110 may replace the
steps 260-264 while allowing the file size attribute request to
pass through the file system filter driver 110 unaltered and
allowing the corresponding response to pass through the file
system filter driver unaltered.

It is further understood that the steps 218, 220, 222, and
224 may be modified to allow the data requested in the read
request to be gathered from the plugin file 122 and/or the
proprietary disk file 120, as at least some portion of the
requested data may actually be stored in the plugin file 122.
Additionally or alternatively, these steps may be modified to
allow the data requested to be gathered from any other local
or remote data storage system, such as a deduplication vault
or database.

It is also understood that the steps 240, 242, 244, and 246
may be modified to allow the data specified in the write
request to be written to a location in the plugin file 122 or
in a location external to the plugin file 122. Further, the data
may be stored in the native file format of the hypervisor 102
or in a proprietary file format.

10

15

20

25

30

35

40

45

50

55

60

65

10

It is also understood that steps 236-254 may alternatively
be modified to allow a hypervisor having native snapshot-
ting/differencing-disk capability to itself handle all write
requests of a guest virtual machine by performing the write
requests on a differencing disk file instead of on a plugin file.
For example, where the hypervisor 102 supports the creation
of differencing disk files, which are snapshots of a virtual
machine disk file, the files system filter driver 110, or other
driver or module of the system 100, can instruct the hyper-
visor 102 to create a differencing disk associated with the
plugin file 122. A differencing disk file may be similar in
some respects to an incremental backup image file, such as
a StorageCraft® ShadowProtect® Incremental (SPI) backup
image file. However unlike SPI backup image files, which
are updated with sequentially-increasing offsets, differenc-
ing disk files may permit random-offset writes of virtual
machine disk data. After the creation of the differencing disk
file, all writes of the guest virtual machine 108 to the plugin
file 122 will instead be written by the hypervisor 102 to the
differencing disk file. The differencing disk file may have a
native hypervisor disk file format, such as a VHDX or
VMDK file format. In this alternative to steps 236-254, all
of the write requests from the guest virtual machine 108 are
handled by the hypervisor 102 itself and are sent directly to
the differencing disk file. The hypervisor in this alternative
embodiment continues to issue read requests to the plugin
file 122 but directs all write requests to the differencing disk
file.

It is further understood that each of the steps discussed
herein that involve “modifying” a request may instead be
implemented by replacing, and/or associating, the request
with one or more new request(s) that is/are configured to
accomplish the same end result as a “modified” request. For
example, a “modification” of a read request may involve
queuing the read request and initiating an associated read
request to a proprietary disk file. The data received in
response to the associated read request may then be filled
into the queued read request’s buffer, such as by copying the
associated read request’s buffer into the buffer for the
queued read request. In this example, both the queued read
request and the associated read request may use a shared
buffer or they may have their own distinct buffers.

The embodiments described herein may include the use of
a special-purpose or general-purpose computer including
various computer hardware or software modules or filters, as
discussed in greater detail below.

Embodiments described herein may be implemented
using computer-readable media for carrying or having com-
puter-executable instructions or data structures stored
thereon. Such computer-readable media may be any avail-
able media that may be accessed by a general-purpose or
special-purpose computer. By way of example, and not
limitation, such computer-readable media may include non-
transitory computer-readable storage media including RAM,
ROM, EEPROM, CD-ROM or other optical disk storage,
magnetic disk storage or other magnetic storage devices, or
any other storage medium which may be used to carry or
store desired program code in the form of computer-execut-
able instructions or data structures and which may be
accessed by a general-purpose computer, special-purpose
computer, or virtual computer such as a virtual machine.
Combinations of the above may also be included within the
scope of computer-readable media.

Computer-executable instructions comprise, for example,
instructions and data which cause a general-purpose com-
puter, special-purpose computer, or virtual computer such as
a virtual machine to perform a certain function or group of

US 9,489,140 B2

11

functions. Although the subject matter has been described in
language specific to structural features and/or methodologi-
cal steps, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to
the specific features or steps described above. Rather, the
specific features and steps described above are disclosed as
example forms of implementing the claims.

As used herein, the term “module” or “filter” may refer to
software objects or routines that execute on a computing
system. The different modules or filters described herein
may be implemented as objects or processes that execute on
a computing system (e.g., as separate threads). While the
system and methods described herein are preferably imple-
mented in software, implementations in hardware or a
combination of software and hardware are also possible and
contemplated.

All examples and conditional language recited herein are
intended for pedagogical objects to aid the reader in under-
standing the example embodiments and the concepts con-
tributed by the inventor to furthering the art, and are to be
construed as being without limitation to such specifically-
recited examples and conditions.

The invention claimed is:

1. One or more non-transitory computer-readable media
storing one or more programs that are configured, when
executed, to cause one or more processors to perform a
method of exposing proprietary data to a hypervisor as
native hypervisor data, the method comprising:

identifying a proprietary disk file having a proprietary file

format;

identifying a plugin file corresponding to the proprietary

disk file, the plugin file having a plugin file format
which is different from a native hypervisor disk file
format;

intercepting read requests directed to the plugin file; and

in response to each read request:

gathering data gathered from the proprietary disk file;

restructuring the data to cause the data to appear to be
gathered from a native hypervisor disk file due to
being structured in the native hypervisor disk file
format; and

responding with the restructured data.

2. The one or more non-transitory computer-readable
media as recited in claim 1, wherein a portion of a name
attribute of the plugin file falsely identifies the plugin file as
having the native hypervisor disk file format.

3. The one or more non-transitory computer-readable
media as recited in claim 2, wherein the portion of the name
attribute of the plugin file is a file extension of the name
attribute of the plugin file.

4. The one or more non-transitory computer-readable
media as recited in claim 1, wherein the plugin file includes
metadata that identifies the plugin file as having the plugin
file format.

5. The one or more non-transitory computer-readable
media as recited in claim 1, wherein a data storage system
external to the plugin file identifies the plugin file as having
the plugin file format.

6. The one or more non-transitory computer-readable
media as recited in claim 1, wherein the plugin file is a
sparse file with a size attribute set to an expected size of a
corresponding file having the native hypervisor disk file
format.

7. The one or more non-transitory computer-readable
media as recited in claim 1, wherein the method further
comprises:

10

15

20

25

30

35

40

45

50

60

65

12

creating a differencing disk file associated with the plugin

file;

receiving write requests directed to the plugin file; and

redirecting the write requests to the differencing disk file.

8. One or more non-transitory computer-readable media
storing one or more programs that are configured, when
executed, to cause one or more processors to perform a
method of exposing proprietary data to a hypervisor as
native hypervisor data, the method comprising:

identifying a proprietary disk file having a proprietary file

format;

identifying a plugin file corresponding to the proprietary

disk file, the plugin file having a plugin file format
which is different from a native hypervisor disk file
format;

creating a differencing disk file associated with the plugin

file;

receiving write requests directed to the plugin file; and

redirecting the write requests to the differencing disk file.

9. The one or more non-transitory computer-readable
media as recited in claim 8, wherein the method further
comprises:

intercepting read requests directed to the plugin file; and

in response to each read request:

gathering data gathered from the proprietary disk file;

restructuring the data to cause the data to appear to be
gathered from a native hypervisor disk file due to
being structured in the native hypervisor disk file
format; and

responding with the restructured data.

10. The one or more non-transitory computer-readable
media as recited in claim 8, wherein a portion of a name
attribute of the plugin file falsely identifies the plugin file as
having the native hypervisor disk file format.

11. The one or more non-transitory computer-readable
media as recited in claim 10, wherein the portion of the name
attribute of the plugin file is a file extension of the name
attribute of the plugin file.

12. One or more non-transitory computer-readable media
storing one or more programs that are configured, when
executed, to cause one or more processors to perform a
method of exposing proprietary data to a hypervisor as
native hypervisor data, the method comprising:

identifying a proprietary disk file having a proprietary file

format;

creating a plugin file corresponding to the proprietary disk

file, the plugin file having a plugin file format which is
different from a native hypervisor disk file format;
intercepting a file open request directed to the plugin file;
determining that the plugin file has the plugin file format;
responding to the file open request with a report that the
plugin file was opened successfully;

intercepting read requests directed to the plugin file; and

in response to each read request:

gathering data gathered from the proprietary disk file;

restructuring the data to cause the data to appear to be
gathered from a native hypervisor disk file due to
being structured in the native hypervisor disk file
format; and

responding with the restructured data.

13. The one or more non-transitory computer-readable
media as recited in claim 12, wherein a file extension of a
name attribute of the plugin file falsely identifies the plugin
file as having the native hypervisor disk file format.

14. The one or more non-transitory computer-readable
media as recited in claim 12, wherein the determining that
the plugin file has the plugin file format includes determin-

US 9,489,140 B2

13

ing that metadata that identifies the plugin file as having the
plugin file format is present in the plugin file.

15. The one or more non-transitory computer-readable
media as recited in claim 12, wherein the determining that
the plugin file has the plugin file format includes determin-
ing that the plugin file is present in a list of files that have
the plugin file format that is stored in a data storage system
that is external to the plugin file.

16. The one or more non-transitory computer-readable
media as recited in claim 12, wherein the plugin file is a
sparse file with a size attribute set to an expected size of a
corresponding file having the native hypervisor disk file
format.

17. The one or more non-transitory computer-readable
media as recited in claim 16, wherein the method further
comprises:

intercepting a file size attribute request directed to the

plugin file; and

allowing the file size attribute request to pass through

unaltered and a corresponding response to pass through
unaltered.

18. The one or more non-transitory computer-readable
media as recited in claim 12, wherein the method further
comprises:

intercepting a file size attribute request directed to the

plugin file;

determining an expected size of a file corresponding to the

plugin file having the native hypervisor disk file format;
and

responding to the file size attribute request with the

expected size.

10

20

25

14

19. The one or more non-transitory computer-readable
media as recited in claim 12, wherein the method further
comprises:

intercepting a write request directed to a particular loca-

tion in the plugin file;

executing the write request by storing data from the write

request in a location in the plugin file or in a location
external to the plugin file with the data structured in the
native hypervisor disk file format;

responding to the write request with a report that the write

request was executed successfully;

intercepting a subsequent read request directed to the

particular location in the plugin file; and

responding to the subsequent read request with second

data gathered from the location where the data from the
write request was previously stored, the second data
being appearing to be gathered from the native hyper-
visor disk file due to being structured in the native
hypervisor disk file format.

20. The one or more non-transitory computer-readable
media as recited in claim 12, wherein the method further
comprises:

intercepting write requests directed to the plugin file;

executing each of the write requests by storing data from

the write request in a location external to the plugin file
with the data structured in the native hypervisor disk
file format; and

responding to each of the write requests with a report that

the write request was executed successfully.

#* #* #* #* #*

